
Niklas Udd 2006-12-02
Principles of Formal Software Development 1/9

u P r o v e
< h t t p : / / u p r o v e . u d d . b e >

1. Introduction

uProve is program for building natural deduction proofs in propositional logic. The user builds the
proof by selecting the lines to which s/he wants to apply a rule, and then select the rule in mind from a
list of suggestions presented by the program. These steps are repeated until the proof is completed.

The program has been developed as a term project for the course Principles of Formal Software
Development at the University of Ottawa.

This document's objective is to describe how the program is designed and implemented, how it can be
installed and how it should be used.

2. Natural deduction

The style of natural deduction used in uProve is the one presented by Graeme Forbes in Modern Logic
[1], but first developed by Gerhard Gentzen. The main idea is that a proof consists of a list of proof
lines. Each one of those lines consists of a list of dependencies, a line number, a formula and a
justification. The last line in a completed proof must contain the conclusion as its formula and only
lines marked as premises in its list of dependencies. A complete list of inference rules in this system is
provided in the end of this report.

A simple proof might look like this. The list of dependencies is written to the far left, followed by the
line number within parentheses, then the formula and lastly the justification.

1 (1) p->q Premise
2 (2) ~q Premise
3 (3) p Assumption
1,3 (4) q 1,3 ->E
1,2,3 (5) _|_ 2,4 ~E
1,2 (6) ~p 3,5 ~I

The symbols used in uProve differ slightly from the ones used by Forbes. A list of symbols is shown
below.

[?] Placeholder, used to represent any formula
~ Negation
-> Implication
<-> Equivalence
\/ Or
& And
| Contradiction

Niklas Udd 2006-12-02
Principles of Formal Software Development 2/9

3. Development

uProve is implemented in Java SE 5.0 (also known as 1.5.0)1. No external libraries except the standard
ones are used. The build tool Apache Ant2 has been used for simplifying the build process, and JUnit3
has been used to run unit tests. However, neither of the two latter tools is needed in order to merely run
the program.

3.1 Architecture and design

The program is built on a three-layer architecture, having a user interface layer, a logical layer and a
persistence layer. The first and the third layer are, in Java, represented as one package each. The logical
layer however is contained in three Java packages. One package consist of connectives, one of rules
and one of general business logic.

These packages are not as stand-alone as I would have wanted. Some, but limited, business logic is
placed in the user interface package to avoid complex workarounds. I however do believe that the
design could be improved without making it more complex, but the problem is that I am not literate
enough in the topic.

3.1.1 Internal representation of a proof

My object oriented design organizes proofs in a similar way as they are in the real (mathematical)
world. That is, a proof (class Proof) consists of a number of proof lines (class ProofLines), each of
which has a list of dependencies, a line number, a formula and a justification.

The list of dependencies, represented by the Dependency class, contains a list of proof lines.

The line number is represented as the primitive data type int.

The formula (class Formula) can take different forms, as seen on the drawing below. It can either be a
symbol (e.g., p), a connective, a placeholder (i.e., [?]) or a contradiction (i.e., _|_). However, a
connective alone does not form a well-formed formula. This is solved by letting the actual connectives
contain one or two formulas themselves.

Finally, the justification can either be a premise (class Premise) or one of the Rules (class Rule).

1 Java can be downloaded from <http://java.sun.com/>.
2 Apache Ant can be downloaded from <http://ant.apache.org/>.
3 JUnit can be downloaded from <http://www.junit.org/>.

user interface persistencelogic

(general)

connectives

rules

Niklas Udd 2006-12-02
Principles of Formal Software Development 3/9

3.1.2 Construction of the list of suggestions

The most interesting part in the program is probably how the list of suggestions is constructed. When a
user clicks a line, that line is packaged together with other selected lines into a ProofLine array. A
RuleTester object is created to which the array is sent. The RuleTester's responsibility is to instantiate
all available rules, asking each of them to return all suggestions it has. The results, also in the form of
ProofLines, are then showed to the user.

The method handling the RuleTester's request is implemented in the Rule superclass and not overridden
in any of the rules. The method works in such a way that it first checks if the number of ProofLines is
correct. If it is, it uses the Permutator to get all possible permutations of the input lines. Each
combination is then checked to see if the rule can be applied. If it can, the resulting lines are collected
and later sent back to the calling RuleTester.

At first I thought that this method would be too slow, since it does not use any intelligence in how the
lines are reordered. It simply tries all possible combinations without considering what the lines look
like. This is clearly not a problem for rules like implication elimination which only takes two input
lines. However, I expected or elimination to be trickier. Five lines are required to do an or elimination,
and those five lines can be ordered in 5!=5⋅4⋅3⋅2⋅1=120 different ways.

I decided to try to this approach first, since the idea of having all rules being tried in the same way is
appealing, but still design the system so it would be easy to override this method for individual rules if
it would be necessary.

Niklas Udd 2006-12-02
Principles of Formal Software Development 4/9

Once implemented, it turned out that these 120 checks was made so fast that it did not cause any
problem whatsoever. The central implementation was therefore kept.

3.1.3 Copy rule

When implementing the functionality mentioned above for building the list of suggestions, I realized
that I had to include one more rule than the ones presented by Forbes in order to not to violate the
completeness of the system. In the system presented in the book it is acceptable to refer to the same line
multiple times when applying a rule. However, this is not possible in uProve since a line only can be
either not selected or selected, it can not be selected twice. This problem was solved by adding a simple
copy rule to the set of rules available, making it possible to first copy a rule and then select both the
original and the copy.

3.1.4 Plug-in system

I originally planned to make a plug-in system where rules (and perhaps even connectives) could be
added or removed as wanted. Among other things, this would facilitate a way for switching from
classical to intuitionistic logic by only removing one rule. The major benefit would however be that
derived rules could be added by users themselves by just adding the corresponding class file.

I rejected this idea at a later stage when I realized that this plug-in system had some drawbacks. The
first, and without doubt the most sever, is that this would impose security issues. Nothing would in this
system stop a malicious person from writing a “rule” that would delete all files on the computer on
which it is running. Since all derived rules used in a proof would have to be serialized and saved along
with the proof itself, this would give a possibility to embed a virus in a proof. (This issue can be
resolved by using the built-in security handling in Java, but other solutions to provide the same
functionality are probably more suitable.)

3.1.5 Unreliable user interface

One major problem exists in this program, and that is the user interface. The functionality of the
program is not affected by this, but it substantially reduces usability. The most common problem is that
components changes size in ways they are not supposed to. It is recommended to have the program
maximized in order to avoid these problems as much as possible.

3.2 Unit tests

My aim was to use test-driven development when developing this program. I did so for the logical layer
but not for the user interface layer or the persistence layer. The components introduced in the logical
layer due to these two other layers, for example the class responsible for handling the user's input, is
not unit tested either.

In total, 227 unit tests have been developed and I believe that these have helped in developing the
program and that they will be very valuable when modifying this program in the future.

3.3 Size statistics

The following table lists the different packages and how many lines of code each of them consists.
(One line of code is here defined to mean one line break.)

Niklas Udd 2006-12-02
Principles of Formal Software Development 5/9

Part LOC

General logic (ca.uottawa.nudd049.uprove.logic) 1083

Connectives (ca.uottawa.nudd049.uprove.logic.connective) 118

Rules (ca.uottawa.nudd049.uprove.logic.rule) 670

Total logical layer 1871

Persistence layer (ca.uottawa.nudd049.uprove.persistence) 163

User interface layer (ca.uottawa.nudd049.uprove.ui) 887

Total production code 2921

Test code 3011

Grand total 5932

4. Installing

There are several ways to start uProve. One convenient method is to use Java Web Start to launch the
application directly from its website, since this method does not require any installation and is totally
safe. However, to ensure the latter, the file system is not accessible from within uProve which makes
the application unable to save and open proofs. For this to work, the program must be downloaded.

The second simplest method is to download the already compiled program as a jar file. See the website
for details on how to do this.

The last method is to download the source code, which is available as a zip file on the website. This
section will describe how to install the program from its source file.

The first step is of course to get the zip file (uProve-src.zip) and unpack it. This can be done in several
different ways, but on a typical Linux system it can be done as shown below.

$ curl -o uProve-src.zip http://uprove.udd.be/download/uProve-src.zip
$ unzip uProve-src.zip

The Apache Ant build tool has been used when developing this program and the appropriate build file
is provided together with the source files. The tool simplifies the build process but is not required.
Sections describing both how to go ahead without Ant and how to do it with Ant are found below.

4.1 Compile and run the program without Ant

An output directory for the compiled class files must be created before continuing.

$ mkdir build

It is now time to compile uProve. Please note that there should not be any line breaks in this, fairly
long, command.

$ javac -d build src/ca/uottawa/nudd049/uprove/logic/*.java
src/ca/uottawa/nudd049/uprove/logic/connectives/*.java
src/ca/uottawa/nudd049/uprove/logic/rules/*.java
src/ca/uottawa/nudd049/uprove/persistence/*.java src/ca/uottawa/nudd049/uprove/ui/*.java

Niklas Udd 2006-12-02
Principles of Formal Software Development 6/9

When this is done it is time to start the application which is done by navigating to the output directory
and invoking Java with uProve's full name as its argument.

$ cd build
$ java ca.uottawa.nudd049.uprove.logic.Main

4.2 Simplify the build process with Ant

Once the source file is unpacked Ant is ready to do its job. As an example the commands for building
and running a jar file are shown below.

$ ant jar
$ cd build/jar/
$ java -jar uProve.jar

Just running the program can be done by invoking the run target.

$ ant run

The unit tests can be ran with the help of the test target.

$ ant test

5. Using the program

This section describes how to use the program once it is started. The section presents and explains the
user interface. This is probably enough to familiarize the reader with uProve and how to use it. A
tutorial is also available on uProve's website.

The exact appearance depends on platform and settings, but the main window should look
approximately as the window shown below.

Niklas Udd 2006-12-02
Principles of Formal Software Development 7/9

The Proof menu can be used for starting a new proof, opening and saving a proof and to exit the
application. Some help can be shown by using the Help menu.

5.1 Rules tab

The Rules tab is used for showing information about how a rule may be applied. The rule of interest is
selected from the combo box, and a short information text is shown right below it.

5.2 Proof tab

The actual proof is showed in the Proof tab. Only the premises are shown in this tab when a new proof
is started, but as the proof is built more and more lines are added to this panel. When a proof is
completed, a text will appear here informing the user about the success.

5.3 Suggestions tab

The proof is being built by, in the proof panel, clicking on the lines to which a rule should be applied.
A list of possible rules to apply is then shown in the Suggestions tab. The user clicks the appropriate
suggestion and the rule is added to the Proof tab.

Niklas Udd 2006-12-02
Principles of Formal Software Development 8/9

On the picture above, two lines in the proof are selected and two suggestions are shown. By clicking on
one of these two suggested lines that line would be added as a third line in the Proof tab.

5.4 Conclusion tab

The Conclusion tab contains the wanted conclusion. A user who has forgotten the conclusion s/he is
trying to prove can open this tab in order to be reminded.

5.5 Starting a new proof

By selecting to start a new proof, a dialog is shown to the user. That dialog is used to enter premises (if
there are any) and a conclusion, which is done by clicking on the corresponding Add button. When
doing so, a dialog is shown that lets the user enter a formula. Both these dialogs are shown below.

5.6 Entering a formula

In some cases, the result of applying a rule cannot be completely determined by the program. This
occurs when the resulting formula contains a placeholder for an arbitrary formula that the user should
enter. In such cases a dialog prompting the user to enter a formula will open.

5.7 Opening and saving a proof

The appearance of the dialogs themselves depend on the platform used, but opening and saving proofs
is done by selecting the corresponding menu item in the Proofs menu. uProve proof files have the
extension .upr.

Niklas Udd 2006-12-02
Principles of Formal Software Development 9/9

6. Inference rules [1]

The list below presents all inference rules used in uProve together with the name of the respective class
in the package of rules.

Assumption (Assumption)
Out: j (j) [?] Assumption

Copy (Copy)
In: X (j) p
Out: X (k) p j Copy

&E (AndElim)
In: X (j) p & q
Out: X (k) p j & E

X (k) q j & E

&I (AndIntro)
In: X (j) p

Y (k) q
Out: XUY (m) p & q j,k &I

->E (ImplicationElim)
In: X (j) p->q

Y (k) p
Out: XUY (m) q j,k ->E

-> I (ImplicationIntro)
In: j (j) p Assumption

X (k) q
Out: X/j (m) p -> q j,k ->I

~E (NotElim)
In: X (j) ~p

Y (k) p
Out: XUY (m) _|_ j,k -~E

~I (NotIntro)
In: j (j) p Assumption

X (k) _|_
Out: X/j (m) ~p j,k ~I

\/E (OrElim)
In: X (g) p \/ q

h (h) p Assumption
Y (i) r
j (j) q Assumption
Z (k) r

Out: XU(Y/h)U(Z/j) (m) r g,h,i,j,k \/E

\/I (OrIntro)
In: X (j) p
Out: X (k) p \/ [?] j \/I

X (k) [?] \/ p j \/I

Equivalence Definition 1 (Df1)
In: X (j) (p->q) & (q->p)
Out: X (k) p <-> q j Df

Equivalence Definition 2 (Df2)
In: X (j) p <-> q
Out: X (k) (p->q) & (q->p) j Df

Double Negation (DN)
In: X (j) ~~p
Out: X (k) p j DN

Ex Falso Quodlibet (EFQ)
In: X (j) _|_
Out: X (k) [?] j EFQ

7. References

[1] Forbes, Graeme (1994). Modern Logic. A Text in Elementary Symbolic Logic. New York, USA:
Oxford University Press. 397 p. ISBN: 0-19-508028-9 – 0-19-508029-7 (pbk.).

	uProve
<http://uprove.udd.be>
	1. Introduction
	2. Natural deduction
	3. Development
	3.1 Architecture and design
	3.1.1 Internal representation of a proof
	3.1.2 Construction of the list of suggestions
	3.1.3 Copy rule
	3.1.4 Plug-in system
	3.1.5 Unreliable user interface

	3.2 Unit tests
	3.3 Size statistics

	4. Installing
	4.1 Compile and run the program without Ant
	4.2 Simplify the build process with Ant

	5. Using the program
	5.1 Rules tab
	5.2 Proof tab
	5.3 Suggestions tab
	5.4 Conclusion tab
	5.5 Starting a new proof
	5.6 Entering a formula
	5.7 Opening and saving a proof

	6. Inference rules [1]
	7. References

